Problem
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3]]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bottom-top DP
class Solution { public int minimumTotal(List
> triangle) { int[] dp = new int[triangle.size()+1]; for (int i = triangle.size()-1; i >= 0; i--) { for (int j = 0; j <= i; j++) { dp[j] = Math.min(dp[j], dp[j+1]) + triangle.get(i).get(j); } } return dp[0]; }}
Non Extra Space DP
class Solution { public int minimumTotal(List
> triangle) { int len = triangle.size(); for (int i = len-2; i >= 0; i--) { for (int j = 0; j <= i; j++) { int preMin = Math.min(triangle.get(i+1).get(j), triangle.get(i+1).get(j+1)); int curMin = preMin + triangle.get(i).get(j); triangle.get(i).set(j, curMin); } } return triangle.get(0).get(0); }}